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Strong Normalization and Perpetual Reductions
in the Lambda Calculus

By Jan A. Bergstra and Jan Willem Klop

Abstract. A lambda term M is called strongly normalizing if every reduction of M stops
eventually (in the unique normal form), and weakly normalizing if some reduction of M
ends in the normal form. Here we are interested in characterizing those reduction steps
M — M’ such that if M has an infinite reduction, M’ has one too. A sufficient condition
is that in the step M — M’ a redex R = (Jz. A) B is contracted where z is free in 4,
i. e. R does not erase its “‘argument”. (A corollary is the well-known fact that in the AI-
calculus strong and weak normalization are equivalent.) An R whose contraction preserves
the property of having an infinite reduction is called perpetual. In the present paper the
perpetual redexes which do erase their argument are characterized.

Introduction. The relevance of 2-calculus to Computer Science, both practically
and theoretically, is at present well established. The property of Strong Normalization
of a A-term is of obvious importance, because it allows one to attach to a A-term a
unique operational meaning. Also in the theory of Term Rewriting Systems (in which
J-calculus occurs as a prime example), much attention is devoted to this topic of
termination (or normalization, as we call it) of reduction sequences.

In this paper we study the behaviour of a A-term w.r.t. normalization in what
seems to be a reversed way: if a A-term M is not strongly normalizing, i.e. admits at
least one infinite reduction, then we are interested in those reduction steps M — M’
which preserve this property of having an infinite reduction. In fact we give a charac-
terization of such steps. In this way we come to an understanding of what happens in
a step M — M’ which is critical in the sense that M has an infinite reduction but M’
not (i.e. M’ is strongly normalizing). Apart from the general insight into the normali-
zation property which this approach via “perpetual” reductions yields, one may also
think of systems in which non-termination rather than termination is desirable (such
as operating systems).

In a technical respect, we have made an essential use of reduction strategies, a
concept which seems to be of independent interest (see [3]). Reduction strategies
ocecur in the Computer Science literature e.g. in definitions of operational semantics
for data type specifications (see [5]).

We will now give a summary of the main definitions and results.

Let A be the set of A-terms. A term M €A is called strongly normalizing if every
reduction of M stops eventually (in the unique normal form). Let SN be the set of
strongly normalizing A-terms. Instead of M ¢ SN we will write coM, to indicate that
there is an infinite reduction starting from M. Par abus de language we will call such
aterm M an infinite term.
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We will study strong normalization by considering the question: supposing that one
is interested to preserve the property oo, which redexes can ‘“‘safely” be contracted
(i.e. without losing o) in any context ? Let us call such redexes perpetual.

A partial answer to this question is obtained in [2]: the redex (1z. 4) B is perpetual
if it does not erase its argument, i.e. if € F'V(4). When applied to the AI-calculus
this result yields at once two well-known facts:

(1) in the AI-calculus strong normalization is equivalent to having a normal form;
(2) a Al-term has a normal form iff all its subterms do.

In this paper we consider the redexes which do erase their argument, and we will
arrive at a characterization of the perpetual redexes among them in terms of a certain
quasi odering =, on /4, defined as follows:

AR) 2w B@) itf VC € SN (co B0)=> 00 A(0)) .

(So 4 = B iff every SN-substitution making B “explode” does the same for 4.)
To be precise, we will prove that the redex (Axz. 4) B where xz ¢ FV(4), is perpetual
iff 4 = B. Together with the partial result in [2] for non-erasing redexes this yields
a characterization of all perpetual redexes.

As in the proof of the result for non-erasing redexes in [2], our main tool will be
the concept of a perpetual reduction sirategy. An outline of the method employed in
this paper will be given after introducing some terminology and preliminaries.

Acknowledgement. We wish to thank Henk Barendregt for useful criticisms on
a draft of this paper and David Isles for some stimulating discussions on the subject
in question.

1. Terminology. We will quickly introduce some basic concepts and notations.

A, the set of A-terms, is defined inductively by (i) #; € A (2 € N); (ii) M, Ne A=
(MNYed; (iii) M e A= (x. M) € A.

If in (iii) the proviso = € FV(M) is added, we get the AI-terms. Here FV (M) is the
set of free variables of M.

The usual bracket convention (association to the left) is employed. Writing M (x,
o> Xp) means FV(M) S {x,, ..., 2x}; then M(Ny, ..., N,) is the result of simultaneous
substitution of Ny, ..., N,, for 2y, ... , 4.

A term R = (Jx - A) Bis called a redex; R = A[x := B], the result of substituting
B for the free occurrences of x in A, is the contractum of R. A term not containing
redexes is a normal form. In the sequel R, R’ will exclusively be used for a redex and
its contractum.

If R = (Az. 4) B then Arg(R), the argument of R,is B. If x € FV(A4), R is called an
I-redex. (But R need not be a Al-term.) If x ¢ FV(A), R is a K-redex and we will
write £ = KAB (inspired by Combinatory Logic).

One step (B)-reduction is defined by C[R] — C[R’] where R, R’ are as above and
C[ ] is a context. Contexts are A-terms containing one hole [J; they can be inductively
defined as follows: (i) [ is a context, the trivial one; (ii) if M € A and N is a context
then (MN) and (NM) are contexts; (iii) if M is a context then (Ax - M) is a context.

C[M] is the result of substituting M for [ in C[ ]. The subterm relation < is defined
by: M & N & 3C[ ] N = C[M]. (= denotes syntactical equality.)

R .
Sometimes we will write M — N to indicate which redex R is contracted in the
reduction step M — N. (As everywhere in this paper we will tacitly assume that it is
clear that we are speaking about occurrences of subterms, in casu R.) The transitive
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reflezive closure of — is denoted by —. Reduction sequences My—~M, - M, — ... —~

My — ... will be denoted by R, plus possibly subscripts. Although it is an abuse of
notation, we will sometimes shorten R = My — ... - M, to R = My, > M,.

If M is not a normal form, the leftmost redex of M is that redex whose head-symbol 4
is to the left of the head-4 of every other redex in .

It 4, B & M we will write 4 <€ B to denote that 4 and B are disjoint (i.e. incom-
parable w.r.t. &) and 4 is to the left of B.

2.1. Definition (Descendants and underlining). (I) Let M — M’ and N < M.
The subterm(s) N' & M’ which can be “traced back” to N are the descendants of N
in M'. N is also called the ancestor of N'). (Notation: N >— N').

The concept of descendant was first formulated in [7], [8]. Since [7], [8] are not

generally accessible we will state the definition here. So let M — M’ be a reduction
step where B = (Az. 4) B is the contracted redex, and let R = A[z := B] be the
contractum in M’. Suppose N’ & M’'. According to the relative positions of N” and R’
we distinguish four cases and define the ancestor N of N'.

(1) NNn R = @ (N’, R are disjoint). Then there is a corresponding subterm
N & M which is the ancestor of N’.

(2) N 2 R’ (R is a proper subterm of N'). Then there is a unique N & M such
that N z N’; and for this N we define N >— N'.

(3) N’ = C[x :=B] for some C where C & 4 but C == ; then C >— N'.

(4) N’ is a subterm of some ““copy” of B in A[x := B]. Then the ancestor of N’
is N’ itself as a subterm of B in M.

The notion >— extends in the obvious way from one step reductions to arbitrary
finite reductions. The transitive reflexive closure of >— is denoted by »>—. So if
R=My—..—> M, (n=0),NS M, and NS M,, then N >— N’ means that N
;s & descendant of N (via R).

Remark. (i) The notion of descendent of N & M can easily be visualized by
tracing the brackets which surround N.

(ii) Note that in the step M kit M’ the contracted redex R = (iz. 4) B has no
descendants in M’. Also the (occurrences of) X in 4 have no descendants in M.

(iii) Note that every N’ & M’ has a unique ancestor N & M. On the other hand,
an N & M can have k descendants for every k = 0.

(ITI) Often it is useful to attach some extra information to a A-term, by specifying
some of its subterms. This specification can be made simply by underlining those
subterms. We define the set /A of underlined A-terms as follows: (1) 2; and z; € A for
all £ = 0; (2) M, N € A= (MN), (MN), (Jz. M), (Jz. M) € A. Reduction extends in
a simple way to A, by requiring that descendants of underlined subterms (and only
those) are again underlined. E. g. (Az. 2x) (NM) — NM(NM).

2.9. Definition. Consider the reduction R = M, — M; — ... and some subterm
L, & M, The descendants of L, in & form a iree; e.g. see Fig. 1.

Now we define a line of descendants (1.o.d.) to be a branch in that tree. '

Note that the l.o.d. £ = L, >— L, >— L, >— ... is in general not a reduction
sequence, since there may be substitutions from “outside” into the L;.

29 KEIK, Bd. 18, H. 7/8
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9.3. Definition. Let & = M, = M, =2 M, 2 1, ...
ur U ull

and a lLo.d. L =Ly>—L>—Ly>— L, ...
be given. Then £ is called passive if for all 7, R; & L.

2.4. Definition. (i) Let R be as above. R is called SN-substituting if for all 2,
Arg(R;) € SN. ‘

(ii) Let M = M(%y, ... ,23) and Cy, ..., Cp € SN. Then M(Cy, ..., Cp) is called an
SN-substitution of M.

9.5. Definition. Let R be as above where R; = (Az;. 4;) B; are the contracted
redexes. R is called simple (w.r.t. substitution) if it is not the case that
3 3j > 1 3IB; & My(B; >— B; & ;€ FV(BY)) .
(Here z; is the bound variable of the redex R; contracted in the step M; — M, of
R.)

Remark. This means that into a “substituted” subterm (i.e. a descendant B; of
B,) there is no substitution (of B;) allowed; roughly said: there are no double sub-
stitutions allowed. An example where such a double substitution occurs, is

(1. ((Ay. y1) (22))) © — (Az. 22]) 0 - wwl .

Note that although this reduction is SN-substituting, the result of the double sub-
stitution is that the descendant wwl of y/ is not an SN-substitution of yI (here
o = Ax. zx). Note also that the reduction is not standard.

R, R, . o .
2.6. Definition. Let # = My — M, — ... be a finite or infinite reduction sequence.
In each M, we will attach to some of the redex-A’s a marker * (meaning: this redex is
henceforth forbidden to contract) as follows.

Basis. In M, all redex-A’s to the left of that of R, are marked.

Inductionstep. In M, the following redex-A’s are marked:

(1) those that had already a mark in M,,

(2) those to the left of the head-A of R, ;.

R is called a standard reduction if the restrictions imposed by the marks are not
violated, i.e. if no marked redex is contracted.

2.7. Lemma. Standard reductions are simple (w.r.t. substitutions).

Proof. Let # = M, % M, & where R; = (Az;. 4;) B; be a standard reduction.
Consider a step

Mmoo o (e ) Bl ) -
Migs = =ooe Ay o 250 === Au(Bulyy gy ) -
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Obviously the free variables y; in B; (which are not free in M) must be bound by
A’s before x;. Hence by Definition 2.6 those y; are ,,frozen” after this step. So R
cannot make a substitution anymore into (a descendant of) B,. []

2.8. Proposition. Let R be a simple, SN-substituting reduction. Let ¥: M >— M’
be a passive l.o.d. tn R. Then M’ is an SN-substitution of M.

Proof. Say M = M(x,, ... , z,). Now it is obvious that the only thing happening
in £ is that some of the variables ; in M are replaced by SN-terms C;: e.g.

M2y, vy Tp) >— M (2q, ooe s 22) >— M(2q, Cyy Zgy oo ) >—
M(Cy, Cyy 24y ev s Zy) >— oo >— M’ .

Since A is simple, there cannot be substitutions into the C; and since £ is passive
there are no reductions inside the displayed terms. Hence M’ = M(C,, O, ... , Cy)
where some of the C; may have remained z;, and indeed all C; € SN. [

2.9. Definition (Reduction diagrams and projections). We will give a quick
sketch of the definition of those concepts; precise definitions can be found in [1], [6].

I L—%M-—->N are two ‘“divergent” reductions, it is by the well-
known Church-Rosser theorem possible to find “converging” reductions L — % —
—~P - % > N.

A stronger version of the CR-theorem asserts that this can be done in a canonical
way, by adjoining “elementary diagrams™ as suggested in Fig. 2. In this way the
reduction diagram D(R,, R,) originates, and in [1], [6] it is proved that it ‘“‘closes”,
i.e. the construction terminates and yields R; and R, as desired.

M R, N
| .
%2 k= ‘22/31
T 2z, R,
¥
L Ry=R [, P

Fig. 2
(here —pp means —»)

It is fairly evident how to define these elementary diagrams; we only give two
examples:

wR +———% RR KAR o—— e KAR’
T R'R
wR’ e—>% R'R’ A g 4

Notice that we have to introduce “empty steps” to keep things rectangular.

Now the in this way canonically found R; is called the projection of R, by R,,
written: Ry = R,/ Roy Similarly R, = R,[R,.
29+
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Another notation: the reduction step M, Sm o will be denoted by { R}. So by the
above, R/{ R}, the projection of & by { R}, is the reduction displayed in the figure

R
]\40 [ el Mn
R D(R.{R})
M, e———————»% M,
R/ R}

(The reduction { R}/R = M, - M, is known as a ‘“‘complete development” of the
descendants of R in M,.)

Remark. In one of the two examples of elementary diagrams above we saw that
a reduction step may vanish when taking a projection of it; namely if R & B, then
{R}/C[KAB] — C[A] = &, the empty reduction.

3. Definition. (i) A map F: A — A is called a one step reduction strategy if M —
— F(M) unless M is in normal form, in which case F(M) = M. All the strategies in
this paper are one step strategies, so we will omit this qualification from now on.
Reduction strategies were introduced in [2], see also [1].

Notation. Rp, i will be the reduction generated by repeated application of F':
Ry, =M — F(M) - F>(M) F3(M) — ...
It is infinite or ends in the normal form of M.

(ii) A redex R is perpetual iff VC[ ] (00 C[R]= oo C [R']), where R’ is the contrac-
tum of R and co M < M ¢ SN as defined in 0.

(iii) A reduction strategy F is perpetual if
VM(co M= oo F(M)) .

4. Definition. Let 4 = A(xy, ..., z,) and B = B(zy, ... , 2y). Then 4 =, B iff
V0 ..., Cp e SN(0o B(Cy, ... , Cp) = 0 A(Cy, ..., Cy)). Obviously, = is a quasi
ordering on /A (i.e. reflexive and transitive).

5. Examples. Define M > N iff M =2 N and - M <, N. Then it is not
hard to prove that

(1) zxx > xx;

(i) zxl >o 22 (I = 1y. v);

(iii) Iz and ax are incomparable w.r.t. =4;
(iv) A2 B=> A = B;

(v) oA VBA =2, B;
(vi) BeSN* & V4 A = B.
Here * is defined for subsets X & A as follows:
X = (M), oo, 0n) € X | VN, oo, Ny X M(Ny, oo, Np) € X}

{Using well-known properties of substitution one can verify that X* & X and
X*E =X\
9
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(vii) f A’ = A = B> B/, then 4’ =, B.

(viii) The property 4 = B is not invariant under SN-substitution; for consider
A =y, B = Az. zyx and the substitution [z := aa]. Then A[x :=aa] =y = 4’ and
B[z := aa] = z. zy(aa) = B’, and now B’ £, 4’. This fact will cause us some
trouble later on.

Outline of the proof. As in [2], we employ the following method of proving that
some redex R is perpetual. We search for a reduction strategy S such that

(i) S is perpetual,

(i) if C[ ] is an arbitrary context, M = C[R] and co M (so by (i) Rg, i is infinite),
then the projection Ry, y/{ R} is also infinite.

(So if such an § exists, it delivers an infinite reduction Rg, 3 /{ B} of C[R’], hence R
is perpetual.)

To this end we define firstly a strategy F: A — A, which is perpetual, SN-sub-
stituting, and yields standard reduction sequences Ry, 3. However, as the example
in Section 14 shows, property (ii) fails for F.

From F' we define another strategy F* (this is our desired §) which has the same
properties as F we just mentioned, and moreover satisfies (ii). F* operates on /1-terms
plus some extra information: an underlining of some K-redexes in M. Now F* is
designed to have the following property. If M == C[KAB] is an infinite term such

that 4 = B, then JRp« 3 is an infinite reduction such that (if the descendants
KA;B; of KAB are also underlined throughout Rz« 3r) no reduction step in Rpe, a

is taking place inside a B; & KA;B;. This guarantees that the projection Rp«, i/

{KAB} is also infinite, since no reduction steps of Rp=, 3y vanish when we take the
projection (recall the remark at the end of Section 3). Hence co C[A4]. So KA B with
A = B is a perpetual redex. The reverse implication is easily established.

6. Definition. Let F be a reduction strategy, defined by induction on the structure
of A-terms as follows.

(1) if M € A is in normal form, then F(M) = M;
(2) otherwise, let (Ax. 4) B be the leftmost redex in M = C[(ix. 4) B]:

(i) if —m o0 B, i.e. B€ SN, then F(M) = C[4[x := B]]
(ii) if oo B then F(M) = C[(Ax. 4) F(B)].

It is easily proved that an equivalent definition of F is as follows.
Let M ¢ A and Ry, Ry, R,, ... be the “special sequence of redexes* in M defined by:

— R, is the leftmost redex of M,
— R, .1 is the leftmost redex of Arg(R,), if Arg(R,) is not in normal form; otherwise
the sequence stops with R,.

Now let R be the first redex in this special sequence such that Arg(Ry) € SN. Then
F contracts the redex R, in M. If the special sequence is empty, which can only be
the case if M is in normal form, then F (M) = M.

7. Theorem. If R is an I-redex, then R 1s perpetual.

Proof (see [2], 5.8). The proof there is an application of a certain perpetual strategy
Fo (the remarkable thing about F, is that it is a recursive perpetual strategy, see
[2] or [1]. It is defined as follows: Fo, scans the special sequence of redexes of M, and
picks out the first I-redex of that sequence, if there is one, otherwise it picks out the



410 J. A. Bergstra, J. W. Klop

last redex in the special sequence to contract). This Fo, satisfies for I-redexes the
requirements (i), (ii) mentioned in the “outline of the proof” above. ]

8. Lemma. F is a perpetual strategy.
Proof. By induction on the structure of A-terms we prove:
coM = oo F(M). (1)

Se let co M and suppose (induction hypothesis) that (1) is proved for all proper sub-
terms of M.
Let M = C[(Az. 4) B] where the leftmost redex is displayed.

Case 1. If co B, then F(M) = C[(Ax. 4) F(B)] and by the induction hypothesis
oo F(B), hence oo F'(M).

Case 2. If — oo B, then F(M)= C[A(x :=B]].
Case 2.1. If (. A) B was an I-redex, then by Theorem 7 co F(M).

Case 2.2. If not, then F(M) = C[4]. Now take an infinite reduction sequence
R=M-—>M, - My, - M; — ...

Case 2.2.1. No descendant of (lz. 4) B= KAB is ever contracted in R. So
M;=CJ[KAB;],fort==1,2,... Now since — oo B and since KA;B; remains the left-
most redex of M,;, we have for some m: B, = B,,+1 = ... But then evidently the
projection

RI{KAB} = C[A] z Ci[4,] - Culdn] — .. = Cu[4n] — ...
is an infinite reduction (since some of the steps up to Cp,[4 ], but not afterwards, may
be trivial).

Case 2.2.2. A descendant of KA B is contracted in R. So
R = ClKAB] - C{[KA,B,] — ... - C,[KA,B,] —
- Cm[Am] - Om+1[Am+1] gty

As in case 2.2.1, the projection R/{ KA B} is an infinite reduction (after deleting some
empty steps) starting with C[4] = F(M). Hence co F(M). [}

9. Remark. From the definition it is clear that F is SN-substituting, i.e. Rp 3
is SNV-substituting. We remark that there is no perpetual NF-substituting strategy
(NF is the set of normal forms); for consider M = (Az. xx) (Az. KI (zz)), then oo M,
but every NF-substituting strategy F' yields the reduction

Rpr st = M — (Ax. zx) (Az. I) — (Jz. I) (Az. I) — I .
10. Definition. Let Ax & A be the set of A-terms in which only K-redexes may
be underlined. To be precise:
(i) @€ Ag forall v € N;
(i) M, N € Ag=> (MN) € Ag;
(i) if M = Az. 4 (where » ¢ FV(4)) and B € A, then (Az. 4) B\= KAB) ¢ 4y,
(i) M e A=Az M € Ay .

11. Definition. From F we define another perpetual, SN-substituting strategy
F*:..{I.K nd 41\'. Let M E_/_]:K'
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Case (i). If 3/ = C[KAB] where c0 A and KAB is the leftmost underlined K-

redex such that co A, then F*(M) = C[KF*(4) B].
Case (ii). Otherwise F*(M) = F(M).

12. Remark. So what happens is that F* ‘zeroes in” via a chain (w.r.t. &) of
infinite underlined 4,’s on its final target A,, in which no infinite underlined A4’s
appear; see Fig. 3.

N
A

K A, 8,
/N .
(Ax. P Ja,
/ Na
(Ax. P4,
\m
(/‘lx.i; )03
/ o
(Ax.P, 18y,
Fig. 3. Here the A4;, for i = 1,....n — 1, are the “intermediate targets”

of F*; and 4, is the final target of F*.

After F has found its final target 4,, it changes into F, the strategy which descends
the chain of special redexes of 4, in search of the first one with SN-argument.

13. Notation and Remark. (i) Let F*[M] be the final target of F* applied on
M, and let F*(M> be the redex which is selected by F* as the one to contract
((lx P.)Qu above)-

(ii) Analogous: F(M is the redex selected for contraction by F.
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We note that
(1) M EL, Py and M 220, pr(a,
(2) F¥ M1 S M= co F¥M],
(3) F¥ M) = F(F* M),
(4) F*[ M= M if M does not contain a KA B such that co 4.

14. Example. To illustrate the working of F'*, consider the following reductions
shown in Fig. 4. Here w: = Az. xx and Q2 := owo.

M = w[iz. K(zo) (xw)] o0 y(lz. zw)
F*(M>
= F<M>

M’ = [x. K(xo) (rw)] [Ar-K(zw) (zo)] o— e (lx.oze) (v zo)
F*M”>
= FKM")

———»% (Az.z00)

L 1¢

M = K([ir. K(zw) (zw)] 0) ([Lr. K(zo) (z0)] o)

M = K(KQQ) ([Axr. K(zo) (zw)] w) 3 »e 0
M7 = M \./ e »; 0
Fig. 4 R, M -

Note that the projection R = Rps y{K(xw) (xrw)} is again infinite, which is
what we wanted. Compare also Rp, y and note that Rp y/{ K(zw) (xw)} is finite
(namely: wlzx. row — (Az. z0) (12. 20) — (A2. 20) ).

15. Proposition. F* is perpetual and SN-substituting.

Proof. Immediately from the definition and because ¥ has the same properties,
by Lemma 8 and Remark 9. ]

16. Proposition. Let M € A. Then Ry, 15 o standard reduction.

Proof. See Fig. 5. Consider M and say that R, is the first redex in the special
sequence of redexes of M with Arg(R,) € SN. Then F in its search “jumps” from
R, to R, and contracts R,. Mark every redex-1 to the left of that of R,; so if Ry jris
to be standard. Ry, Ry, ..., R,_; plus the redexes in Py, Py, ..., P, are henceforth
forbidden to contract.

Now it is easy to see that F respects those restrictions, since in all following steps
F will also jump over all in this step marked A’s because the perpetuality of ¥ conserves
the property oo of (the descendants of ) Qy, @y, - » @n_1.

Similarly the marks originating in the following steps of Ry 3 are respected by F.
Hence F yields a standard reduaction. [
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_ ¥  x @©
Ra = (Ax.F 14,
I -

\
R = \,((le}lfj

. N . . I‘
Uw.- ¥ 220
R, = N A x.pP_,1Q,_,
-
R, = F(M) = (Ax. P, 18Q,
Fig. 5

17. Proposition. Let M € Ag. Then Rp« a 15 a standard reduction.

Proof. Let Rps 3y be M = M, Freiy M, kiSO Suppose (induction hypothesis)
that we have proved that M, — ... — M, is standard. See Fig. 6.

F*[ My _1]
it
Mpoq = e K ‘ A ’ P
T
o0
(Azy. Py) @y
18}
(o)
(Azy. Py) @,
L6}
] e
Fig. 6 (Mm Pm) Qm =F¥My_1)

Consider M, _ 1, the special sequence of F*[ M, _1], and the contraction of F*{(M,, _1>.
There are two cases.

Case 1. In the step M, _; — M, a new KFQG redex with coF appears. That is,
there is a KF'G & M,_, where — oo F' such that KF'G' >— KFQ S M, where
cokF. T _ T T

This is only possible if there is a substitution into F’, i.e. F' & P, and hence
KF@ < P,,.

This implies that F*[M,] & the contractum of F*(M,_1> = (Axy. P,) @un. Hence
F*[M,] and a fortiori F*(M,), are to the right of the descendants in M, of (lx;. P,),
«os (A2 1. Pp—1). So indeed the standard requirement is fulfilled.

Case 2. Otherwise, it is evident that F*[M,] = the descendant of F*[M, ;]
(here we use the perpetuality of F).
Then Proposition 16 yields the result. [J
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18. Proposition. Let M € A and let (Ax. A) B be a redex in M. Then
(i) F{<M> S B= o B and
(1) FKMy & A.

Proof. Routine. [

19. Proposition. Let M € Ag and KAB & M. Then:

(i) F¥{M) & B=> x B;
(ii) F*{M> S A= o0 4.

Proof. (i) Suppose M 2 KAB2 B2 F*M). If M°= F*M] 2 KAB, we
are through by Proposition 18(i). So suppose M°® 2 K4 B. Then, since M° Q‘FQ*XM >
we must have B 2 M° 2 F*(M)>. By the remark in Section 13, oo M°. Hence oo B.

(ii) Suppose M 2 KAB 2 4 2 F*(M . There are 3 cases.

1. M° 2 KAB is not possible, by Proposition 18(ii).
2. If 4 2 M° we are done since then M° & M, hence co M?, hence co 4.
3. The only remaining case M° = K4 is impossible by definition of M°. J

— ClKA'B) where A" 4" Then F¥(M'y S A’ .

Proof. Since F¥*(M) € 4 and F¥ M) S F*[M], clearly either FF¥[M] S 4 or
F*[M] 2 4. The latter case is impossible since F*(M) = F{F*[M]) cannot be a
subterm of the function part of a redex (Proposition 18(ii)). So F*[M] < A. Hence
oo F*[M], and by perpetuality of F, the descendant of F*[M]in M’ is again infinite.
Hence oo A’. Therefore F*¥(M'> & 4. [J

21. Proposition. Let M € Ay and KAB & M where co A. Then F*{M,; << A or
F* My S 4. - T

Proof. An easy induction on the number of steps in which F zeroes in via the
intermediate targets (see Section 12) on its final target M® = F*[M], shows that
MO L Aor M°CS A.

Hence F(M® = F*(My € Aor S 4. O

22. Definition. Let M € /.
(i) Aredex KAB & M such that A = B is a p-redex.
(ii) A redex KAB & M such that — oo Bis a g-redex.
(iii) If every KAB S M is a p-redex, M is a p-term.
(iv) If every KAB & M is a p- or g-redex, M is a pg-term.
23. Proposition. An SN-substitution of a p-redex is a p- or g-redex.

Proof. Let KAB be a p-redex and let KA’B’ be an SN-substitution. Suppose co B'.
Then by definition of =, 00 A’. Hence (Section 5(v)) A" = B, i.e. KA'B' is a
p-redex. If — oo B’, then KA’ B’ is a g-redex. []

24. Proposition. Let M € Ay be a p-term and let Rp», 3 be
uErpan B ron s ..
Then for all ©, F*¥(M) 7s a pg-term.



Strong Normalization 415

Proof. Consider the original p-redexes KAB in M. Evidently, it S}lffices to take
an arbitrary such K4B and an arbitrary l.o.d. £ through & starting with that KAB:

¥ = KAB>—KA'B' >— KA"B' >— ... >— “]{A(“;)'fi(i) >— e

il i Al Al

4N

Rps oy = M —Loer y, — oy, M, e

and to prove that every KA®B®Y in ¥ is a p- or g-redex.

Now say that j is the least natural number such that B, & KAYBY. So the ir%ii?ial
part of £, KAB >— KAYB is a passive lo.d. Since Ap+, 3 is standard (Proposition
17), it is simple (Lemma 2.7). Since Rz»_ y is also SN-substituting, by Proposition 2.8
KADBD is an SN-substitution of K4 B; now by Proposition 23 it is a p- or g-redex.
Likewise the KA®B® for k < j are p- or g-redexes. (The same argument in case there
is no j as supposed.) )

To treat the other part of ., which is no longer passive, we distinguish the following
cases.

Case 1. B; = KAYWBY. Then £ stops in MW (since the contractum of a redex is
not a descendant of that redex) and we are through.

Case2. R; & AY. By Proposition 19 (ii) we have: Rj.; & AU+H for all k; and
by Proposition 20, co AG+H for all k. Therefore by Section 5(v) all KAY+*¥BU+F are
p-redexes.

Case 3. R; © BY. Since Rp+, 3 is standard, there will be no more substitutions into
the KAU+PMBU+D" (k = 0) (because this would need a contraction of a redex whose
head-1 is to the left of BY), hence of R;).

Now if KAWBW is a g-redex, i.e. BY) is finite, then we are through: BU*H will
remain finite for all k. And if it is a p-redex then we are also through, since by Section
5(vil) 4 =« B —» B’ implies 4 =2 B'.

25. Lemma. In the situation of Proposition 24, Rps u contains no reduction steps
wside an argument of an underlined K-redex (i.e.no B, < B S KAB S M;, for all
1= 0 and all KABin M)).

Proof. By Proposition 24, all the M, are pg-terms. Now suppose that there is an ¢
and a KAB S M, such that R, & B S KAB. There are two cases:

1. KAB is a g-redex, i.e. B is finite. But this is impossible by Proposition 19.

2. KAB is a p-redex, i.e. 4 = B. By Proposition 19, co B. Hence co4. But then
by Proposition 21 it is impossible that R; is to the right of 4. — Contradiction. [

26. Corollary. co C[KAB] & A = B= oo ([4].

Proof. Underline KA B. The resulting underlined term M, = C[KA B] is then a p-
term. Since co M, and F* is perpetual, the reduction Rps, 5 is infinite.
Now consider the projection R = Rpx, p/{ KAB} shown in Fig. 7.

Claim. Each reduction M; —> M, is in fact one step.

Proof. Consider in the figure showing D(Rp», p, { KAB}) the subdiagram D(M; —
— M;11, R;). Here R, = {KAB}/M,—> M,; is a complete development of the
underlined K-redexes KA;B,.
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M, M, M, M; Ry =F™CM) My
R gy = —— —
KA731Y Rl,f ;
>N b N
KA,B ) [
KAB EI S PR R O
i
\
¥ \
l’: L o B | -——-———\ Bz L —_——
’ ! 1
M, M, M, M M,
TFig. 7

(see Remark to Fig. 2)

Now by Lemma 25, R; = F*{M,> is not a subterm of the argument of an under-

lined K-redex. Hence N; ; 24 N; 1 1 is indeed one step and R, ; is again not covered
by the argument of an underlined K-redex, etc. This proves the claim.

So we proved that &' is infinite, and hence co C[4]. [
27. Proposition.

00(Axy, wv Ty A(gs e s 23)) Cp ooe Cp & Oy v s Cp € SN = 00A (0, oo, ).
Proof. Induction on =.

Basis. n=1. Let M = (Ax. A(x)) C where O ¢ SN and suppose co M. Take an
infinite reduction R of M.

Case 1. M’s head-redex is never contracted in &R. Then clearly, since €' €SN,
oo A(z). Hence also oo A(C).

Case 2. Otherwise & = M —» (Az. 4’(x) C' — A'(C") — ... Hence oo A'(C"), and
because 4(x) —» 4’ (x), C — €' imply A(C) - 4’(C"), also co A(C).

Induction step. The same argument. []

28. Theorem. The redex KAB 1s perpetual & A = B.

Proof. («) is Corollary 26.

(=) Let A= A®@) = Ay, .oy ;) and B = B@) = Blxy, ... , 2,) where {2, ...,
25} = FV(4) u FV(B). N - -

Suppose — A(Z) Zw B(#). Then for some C € 8N, (i) co B(0) but (i) = 0 4(C).
Now consider the context C[ ] = (A%. ) C.

—> —

Since co KA(C) B(C) by (), we have oo (1. KA(Z) B) C, ie. oo O[KABI.
But — co (4Z. A(@)) C by (ii) and Theorem 28, i.e. — co O[4]. Hence KAB is not
perpetual, contradiction. [

29. Corollary. The redex (Ax. A) B 1s perpetual & x € FV(4) or A = B.
Proof. Corollary 29 and Theorem 7. [
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Pesrome

/-TrepMm M Ha3bIBAeTCA CTPOro HOPMAaJIN3YeMBIM, €Clli KarKkAaa HeloYyKa NPUBENeHHA
o0priBaeTCA, IPUBOMIS K ONHO3HAYHO ONpeesieHHOH HOPMAalbLHOII ¢opme, u caabo HOP-
MAJIU3YeMBIM, €eClH CyLiecTByeT XoTA Obl ogHa oOphiBalllasgcsa Lenouyka. B crarbe
paccMaTpUBAIOTCA CBOMCTBA TAKUX IUATOB npuBereHusa M — M’, gaa roTopuix M’ umeer
GeCHOHEUHYIO IENOYKY IpPUBENeHUs, €ClU TaKOBYI0O uMmeeT M. J0CTAaTOUHBIM yCIOBHEM
9TOTO ABJSETCS TO, UTO BO BpeMs wara M — M’ cokpallleHHI0 IoLBepTaeTcsa TaKoil pexexc
(ocraToK) R = (Ax. 4) B, B KOoTOpOM % CBOGOAHO BXoauT B A, T. e. R He TepseT cBo-
ero ,,aprymenra‘‘. (CjenctsueM 3TOr0 ABJAETCA TOT XOPOWIO M3BECTHHII parrt, uro B
A-ycuucienun crporad u cjaabad HOPMANM3yeMOCTH cosnapgaoT.) Pemekc E, mpu
COKpallleHHH KOTOPOr0 COXPAHAETCA CyllecTBOBaHUE HeoOpLIBAIOIECsa LemoYrya IpHu-~
BelleHUs, Ha3blBaeTcA coXpaHawmuM. B Hacrosmeil pafoTe paccMaTpPUBAIOTCA COX-
PaHAIOIME PeIeKCHl, KOTOPHIe TEPAIT CBOIl apryMeHT.

Kurzfassung

Ein A-Term heiBt streng normalisierbar, falls jede Reduktionskette abbricht (in der
eindeutigen Normalform), und schwach normalisierbar, falls eine Reduktionskette zur
Normalform fithrt. Hier interessieren wir uns fiir die Charakterisierung solcher Reduk-
tionsschritte M — M, fiir die M’ eine unendliche Reduktionskette hat, falls M eine hat.
Eine hinreichende Bedingung dafiir ist, daB im Schritt M — M’ ein solcher Redex
R = (Az. A) B kontraktiert wird, bei dem x in A frei vorkommt; d.h., R verliert sein
»Argument‘‘ nicht. (Eine Folgerung ist der wohlbekannte Fakt, daB im 11-Kalkil strenge
und schwache Normalisierbarkeit zusammenfallen.) Ein R mit der Eigenschaft, dafl seine
Kontraktion die Existenz unendlicher Reduktionsketten erhélt, heiBt vererbend. In der
vorliegenden Arbeit werden diejenigen vererbenden Redexe charakterisiert, die ihr Argu-
ment verlieren.
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